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ABSTRACT: Proteins usually need to transit between different conformational states to fulfill their biological functions. In the
mechanistic study of such transition processes by molecular dynamics simulations, identification of the minimum free energy path
(MFEP) can substantially reduce the sampling space, thus enabling rigorous thermodynamic evaluation of the process.
Conventionally, the MFEP is derived by iterative local optimization from an initial path, which is typically generated by simple brute
force techniques like the targeted molecular dynamics (tMD). Therefore, the quality of the initial path determines the successfulness
of MFEP estimation. In this work, we propose a method to improve derivation of the initial path. Through iterative relaxation-
biasing simulations in a bidirectional manner, this method can construct a feasible transition pathway connecting two known states
for a protein. Evaluation on small, fast-folding proteins against long equilibrium trajectories supports the good sampling efficiency of
our method. When applied to larger proteins including the catalytic domain of human c-Src kinase as well as the converter domain of
myosin VI, the paths generated by our method deviate significantly from those computed with the generic tMD approach. More
importantly, free energy profiles and intermediate states obtained from our paths exhibit remarkable improvements over those from
tMD paths with respect to both physical rationality and consistency with a priori knowledge.

1. INTRODUCTION
The biological functions of proteins are usually realized
through the structural transition between different conforma-
tional states.1 In ion channels like NaV channels, the pore
domain switches from a “closed” state to an “open” state
during voltage-gated activation to allow the transmembrane
permeation of Na+ ions.2 Glucose transporters like GLUT3
alternate between inward facing and outward facing states so as
to facilitate the transport of D-glucose across the membrane.3

Kinases like ADK4 and c-Src5 interconvert between inactive
and active conformations during phosphorylation and
dephosphorylation processes, which enables the cellular
regulation of enzyme activity. Despite the great success,
experimental structural determination methods such as nuclear
magnetic resonance (NMR), X-ray crystallography, and cryo-
electron microscopy (Cyro-EM) can only obtain the high-
resolution structures of certain highly stable states for a given
protein, thereby missing the dynamic characteristics harbored
in other states because of their transient nature or the
limitation of in vitro conditions. Small-angle X-ray scattering
(SAXS) and single-molecule techniques can capture the

structural dynamics to a certain extent but fail to provide
molecular details at the atomistic level.
As a powerful computational tool to facilitate the under-

standing of protein functions as well as the structure-based
drug design, molecular dynamics (MD) simulations aim to
provide the spatial and temporal information of protein
structures simultaneously,1 although in practice, they often
suffer from the lack of convergence because of the long time
scales of many biological processes that exceed the limit of in
silico simulations. To improve convergence, a variety of
strategies have been developed to maximally explore the
protein conformational space starting from an experimentally
determined structural state. Besides simple elongated simu-
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lations using dedicated hardware such as Anton6−9 and
graphics processing unit (GPU),10−12 enhanced sampling
methods are designed to help the protein escape from local
energy basins or overcome barriers. A mainstream class of
methods expands the sampling space by modifying the
potential energy surface using biasing potentials.13 For
example, energy boosts are exerted on the original potential
to reduce the heights of local barriers in accelerated MD
(aMD);14 local minima in the already-sampled region are filled
with positive history-dependent Gaussian potentials to avoid
redundant sampling in metadynamics15−17 and its var-
iants;18−20 deep-learning techniques are engaged for dimen-
sionality reduction in VAE,21,22 AE,23,24 and VAMPnet25 as
well as fitting free energy surface or biasing potential in
reinforced dynamics,26 DeepVES27 and TALOS.28 Another
class of methods enhances the sampling in the less sampled
regions by iteratively selecting suitable seed structures as
restarting points for new simulations, including but not limited
to FEXS,29 SDS,30 CoCo MD,31 and weighted ensemble.32,33

Besides, novel machine-learning-based methods trying to draw
independent samples from the equilibrium states in one shot
have emerged, exemplified by variational autoregressive
networks34 and Boltzmann generators.35

Albeit powerful, the above methods become less efficient
when at least two structural states of the target protein have
been determined experimentally. In this scenario, essential
interests are focused on how to find the atomistic details of
conformational interconversion between these fixed states,
instead of expanding the sampling of the overall conforma-
tional space. A number of methods have been proposed to
fulfill such demands specifically. For instance, path sampling
techniques, such as transition path sampling (TPS)36 and its
derivatives, transition interface sampling (TIS),37−40 mile-
stoning,41 and forward flux sampling (FFS),42,43 obtain an
ensemble of transition pathways using numerous unbiased
sampling trajectories and choose reactive trajectories by
weights in the transition-state ensemble for reaction rate
estimation. Weighted ensemble methods,32 on the other hand,
sample pathways by spawning child trajectories upon reaching
new regions of configuration space and assigning weights to
them. TeDA244 uses adaptive seed structures to sample from
both endpoints in reduced feature spaces. When sufficient
amount of sampling is available with these methods, the
pathways can be derived by visual inspection or from kinetic
network models like Markov state models (MSM).45−47

However, the sampling itself is usually far from sufficiency
because of the ubiquitous high barriers that separate
metastable states and the numerous coordinates involved in
the process. Additionally, MSMs use crude dimensionality
reduction methods like clustering to estimate the probabilities
of macrostates and thus cannot provide a rigorous free energy
evaluation of the process.
Hence, it is necessary to further reduce the dimensionality

by finding the most probable reaction pathway or the
minimum free energy path (MFEP), which allows fast and
sufficient sampling along it and the subsequent rigorous
evaluation of the potential of mean force (PMF). Previous
strategies generate an initial path using linear interpolation
(morphing methods),48 targeted MD (tMD),49 or other
enhanced sampling techniques50,51 and then optimize the
guessed path via path searching methods represented by the
string method52 and its variants.53−55 These path searching
methods, however, only allow local optimization around the

initial path and frequently fail when the initial path deviates far
away from the true MFEP, particularly on the rugged free
energy surface where numerous energy peaks located in-
between hinder the iterative path refinement. Consequently, a
physically unreliable free energy estimation will be produced
upon a poor initial path. For instance, in a study of transition
between the active and inactive states of c-Src kinase, the free
energy profile along the path that was initialized from tMD and
then optimized using the string method with swarms of
trajectories (SMwST) exhibited an energy barrier of ∼30 kcal/
mol,56 a value that is highly unlikely to be overcome by atomic
thermal motions of the system. Therefore, improving the
estimation of the initial path is of great importance. The
adaptive anisotropic network model (aANM)57 was an early
attempt, which guides the protein to move toward target
direction based on the recombination of normal modes.
Although fast, such an elastic network model (ENM)58-derived
method is still naive because the normal modes spanning the
space of internal motions are extracted within one native
structure,58 unable to reflect kinetic information of the whole
trajectory. Adelman and Grabe combined the string method
and weighted ensemble to improve the sampling along the
transition path.59 Unfortunately, when applied on protein
targets, the initial path was still generated using a two-state
elastic network model that was produced upon two fixed
protein states. Sultan and Pande engaged a small number of
low-frequency motions estimated from equilibrium MD
simulations on the fixed ending structures as collective
variables to guide the Metadynamics sampling.60 Without an
adaptive strategy, this kind of method needs substantial
sampling of the intermediate states of the transition process
to identify a good set of collective variables. Besides, neglecting
medium frequency modes may hinder the effectiveness of
transition path sampling.
In this work, we developed a collective motion-based

bidirectional adaptive sampling (COMBAS) method to
construct a physically reasonable transition pathway between
a pair of functional states for a protein, particularly when the
two states have sufficient structural difference. Starting from
both ends, the protein is driven toward the other end along the
collective motion that is represented as the optimal linear
combination of a large number of motions identified by time−
structure-based independent components analysis (tICA)61,62

in each cycle, followed by sufficient relaxation. Through
adaptively updating the ends and the subsequent sampling, the
iteratively produced structural frames from relaxation (i.e.,
equilibrium) MDs in all cycles enable the construction of a
feasible transition path, which allows rigorous PMF evaluation
after the path optimization using the string method. Here, we
first validated the basic principle of this method on three small,
fast-folding proteins (chignolin, trp-cage, and villin) and found
that COMBAS sampling could successfully capture the major
characteristics of the reversible folding processes, nearly to the
same extent as the extremely long equilibrium simulations but
with tremendously reduced simulation time. Then, we applied
this method on more complicated protein systems, where the
large-scale conformational changes can hardly be tracked by
existent equilibrium simulations. In the investigation on the
inactive-active transition for the catalytic domain of human c-
Src kinase (denoted as c-SrcC)5,63 as well as the interconver-
sion between the pre-power-stroke (PPS) and rigor (R) states
for the converter domain of myosin VI (denoted as
MVIC),64,65 the paths generated by COMBAS deviate
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remarkably from those produced using the traditional tMD
approach. More importantly, in comparison to tMD, the path
obtained by our method shows substantial improvement in
both the free energy estimation and the consistency with a
priori knowledge.

2. METHODS

2.1. Generation of the Initial Path by COMBAS.
2.1.1. General Idea and Implementation of the Overall
Pipeline. The general purpose of COMBAS is to identify a
physically reasonable transition pathway that is spatially close
to the true MFEP in principle, at low consumption of
computational time and resources. The whole pipeline
proceeds in an iterative manner (Figure 1). At the beginning
of each cycle, we run conventional MD (cMD) to allow both
ending structures to relax locally in the conformational space.
For each ending structure, we perform tICA to identify the
slowly decorrelating eigenvectors corresponding to low
frequency modes, that is, the time−structure-based independ-
ent components (tICs), based on the cMD trajectory and then
try to find an optimal linear combination of these tICs that is
best correlated with the difference vector (Diff-vector)
between the two ending structures. The collective motion

along this optimal linear combination of slow tICs reflects an
ideal movement mode that comprehensively considers physical
feasibility and structural guidance. Subsequently, we pick up
the cMD snapshot with the largest deviation away from the
first structure along the identified collective motion and
initialize a short biased MD to moderately amplify the
movement in that direction. At the end of each cycle, both
ending structures are updated by frames in the biased MD
trajectories. The whole scheme is a relaxation-biasing iteration
executed bidirectionally from the initial and final structural
states of a target protein, with both ending structures and
collective motions updated adaptively. The cMD snapshots
obtained in the relaxation simulations in all cycles thus
compose two sets of intermediates that approach each other
gradually in the conformational space. The sampling converges
when the smallest Euclidian distance between the two sets of
structures within the space of top principal components (PCs)
could no longer reduce. After convergence, if the two cMD
trajectories in the last cycle do not overlap, we perform tMD to
fill the gap. Nevertheless, all sampled structural frames from
cMD and tMD if necessary in COMBAS allow the
construction of an initial guess of the transition path, which
is subsequently optimized using the string method. Finally, a

Figure 1. (A) Schematic illustration of the overall COMBAS sampling process. Starting from two known protein conformational states, the
algorithm proceeds bidirectionally in an adaptive manner, generating two series of biasing−relaxation iterations. In each cycle, the protein is first
forced to move along an ideal direction (i.e., the optimal collective motion, shown as red arrows) calculated from an equilibrium simulation (shown
as normal distributions colored in blue) by a small-step biased simulation and then sufficiently relaxed for the next iteration. The dotted lines
indicate the directions of Diff-vectors in each cycle. The upper tMD is optional, used only when there exists a gap in the COMBAS sampling region,
whereas the lower tMD denotes the traditional way of path initialization for complicated protein systems, which was taken as control in the
experiments on c-SrcC and MVIC. Structural frames from all equilibrium trajectories finally compose a feasible transition path. (B) Flowchart of
COMBAS sampling. Only one computational block starting from one ending structure is shown here. In practice, two blocks are executed
simultaneously in each cycle to allow bidirectional sampling.
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protocol to calculate PMF along the refined path para-
meterized using the principal curve66 is established to further
reveal thermodynamic properties of the structural transition
process. The detailed implementation of COMBAS is
described below.

(1) The method is based on the simultaneous generation of
pairs of intermediate conformations starting from the
known endpoints A and B, two local minima on the
potential energy surface. We first align B to A to obtain
the 3 N-dimensional representations XA and XB, that is,
the Cartesian coordinates of Cα atoms in A and B,
respectively. At the beginning of the ith cycle, where i =
1, 2, 3, ..., we run short cMD simulations to improve the
local sampling for the starting structures Xi − 1

A and Xi − 1
B ,

respectively. Particularly, in the first cycle, X0
A = XA, X0

B =
XB. The outcome trajectories are superposed to XA to
remove translational and rotational degrees of freedom,
resulting in ξi

A and ξi
B. In this work, 10 ns cMD is

performed with 1000 snapshots saved in each trajectory.
(2) We calculate a difference vector dvi⃗, named Diff-vector,

to define the direction from one ending point to the
other in the ith cycle, and normalize it to the unit length:

÷ ◊÷÷
=

−
−

− −

− −

X X
X X

vd ,i
A i

B
i
A

i
B

i
A

1 1

1 1 (1)

÷ ◊÷÷ ÷ ◊÷÷
= −v vd d .i

B
i
A

(2)

(3) Instead of using geometric similarity as a proxy for
kinetic similarity, we perform tICA, a dimensionality
reduction technique producing slowly decorrelated
eigenmodes α α⃗ ⃗( )A B (i.e., tICs), to extract slow move-
ment modes from the time series ξ ξ( )i

A
i
B . The

eigenvalue of the time-lag correlation matrix becomes
nearly zero at about the midpoint of d dimensions, and
thus, only the eigenvectors with positive eigenvalues are
taken into consideration:

α ⃗ = [ ]j d( 1, 2, 3, ..., /2 ) ,j
A

(3)

α ⃗ = [ ]j d( 1, 2, 3, ..., /2 ).j
B

(4)

(4) In order to avoid sampling around irrelevant local
minima and accelerate convergence, we seek to find the
most probable direction, along which the conformational
sampling is kinetically accessible. Based on this idea, the
Pearson correlation coefficient (PCC) between the
linear combination of the top J dominant eigenvectors
(with low frequencies) and the Diff-vector is evaluated.
Considering that PCC is identical to the correlation
cosine between the two vectors under this circumstance,
this problem is formulated as an optimization problem
with the objective function of

÷ ◊÷÷
= ⃗ · = [ ]f J v v J d( ) d ( 1, 2, 3, ..., /2 )A A

i
A

OCM (5)

,

ωα

ωα
⃗ =

∑ ⃗

∑ ⃗
= [ ]=

=

v J d( 1, 2, 3, ..., /2 )A j
J

j j
A

j
J

j j
AOCM

1

1 (6)

,

÷ ◊÷÷
= ⃗ · = [ ]f J v v J d( ) d ( 1, 2, 3, ..., /2 ),B B

i
B

OCM (7)

ωα

ωα
⃗ =

∑ ⃗

∑ ⃗
= [ ]=

=

v J d( 1, 2, 3, ..., /2 ).B j
J

j j
B

j
J

j j
BOCM

1

1 (8)

For each J, stochastic gradient descent (SGD) is used to
search for the best weights (ωj, j = 1,2, ..., J) for input tICs,
with the loss function set as the opposite of the inner product
between the resulting combined vector and Diff-vector under
certain J:

÷ ◊÷÷
ω

ωα

ωα
| = −

∑ ⃗

∑ ⃗
·=

=

J vLOSS ( ) d ,A j
J

j j
A

j
J

j j
A i

A1

1 (9)

÷ ◊÷÷
ω

ωα

ωα
| = −

∑ ⃗

∑ ⃗
·=

=

J vLOSS ( ) d .B j
J

j j
B

j
J

j j
B i

B1

1 (10)

To accelerate calculation, we evaluate the objective functions
only for J values at multiples of 10, which means that every 10
tICs are grouped together for the final decision on the optimal
J (see the Results for details). This step provides the optimal
collective motions ⃗v .A

OCM and ⃗v B
OCM

(5) We then calculate projections of all cMD frames (ξi) on
the optimal collective motion vO⃗CM with respect to the
first structure,

ξ= ⟨ | ⃗ ⟩vPROJ ,A
i
A A

OCM (11)

ξ= ⟨ | ⃗ ⟩vPROJ ,B
i
B B

OCM (12)

where the brackets denote the inner product between ξi and
vO⃗CM.

(6) Subsequently, the system is made to move along the
optimal collective motion via a one-step biased sampling.
“One step” means a short biased simulation (2 ns here)
targeted to a putative central structure that is generated
by applying a small-step movement along the direction
of optimal collective motion. We use a scaling factor k to
control the step size. The limit of k → 0 refers to
infinitesimally small displacements that are accurate
(identical to unbiased sampling) but computationally
costly. By selecting a proper k value (0.15 here), we
achieve a tradeoff between sampling consumption and
negative effects of artificial biases. The step size of one-
step biased sampling is determined as:

= · ·− −X Xkstep RMSD ( , ) gap ,A
i
A

i
B A2

1 1 (13)

= · ·− −X Xkstep RMSD ( , ) gap ,B
i
A

i
B B2

1 1 (14)

where the gap defined as

= −gap median(top10%(PROJ )) median(bottom10

%(PROJ )),

A A

A
(15)

= −gap median(top10%(PROJ )) median(bottom10

%(PROJ )),

B B

B
(16)

stands for the difference between the median of the top 10%
projections and that of the bottom 10% projections and
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roughly reflects the range of conformational change along vO⃗CM
in a cMD trajectory. Here, the root-mean-square-displacement
(RMSD) is adopted to dynamically adjust the step size. For
example, when the representative structures are separated far
away with a large RMSD, the biased sampling should walk by a
relatively large step and vice versa. We tested multiple values
(0, 1, and 2) for the power of RMSD in the formula and found
that using square of RMSD scaled by k and gap in the step
could make the calculation converge at a moderate speed and
keep k as a nearly constant value simultaneously.

(7) After the biased MD, the trajectory is projected onto the
optimal collective motion and the frame with the largest
projection is chosen to update the ending structure (Xi

A

or Xi
B), from which new cMD simulation is initiated in

the next cycle. In practice, we also refer to the RMSD
between the two ends when making decision, that is,
structures with a large projection and a small RMSD are
selected.

Steps 1−7 are repeated until the convergence criterion is
satisfied.
2.1.2. Convergence Determination of COMBAS. We

evaluate convergence after the cMD (step 1, see Figure 1) of
each cycle. Specifically, following the principal component
analysis (PCA), all historical cMD trajectories are projected
into the space of the top principal components (PCs). Here,
the number of PCs is determined based on the ratio of total
variance accumulatively explained by the selected number of
top PCs. Convergence is believed to be reached only when the
two sets of cMD frames collected from iterative cycles starting
from the two initial structural states can no longer approximate
each other in the PC space, or more precisely, the Euclidean
distance between the two sets does not drop with the
proceeding of iterative cycles. A complete transition path is
already available if the two sets overlap in the last cycle.
Otherwise, we perform tMD to fill the gap.
2.1.3. Computational Architecture. The overall scheme is a

relaxation-biasing iteration, accompanied with sequential or
parallel operations. Based on simulation origins (i.e., the initial
end points A and B), the calculation can be divided into two
blocks, the A started block and B started block. Within each
block, the computation is executed sequentially, while two
blocks are computed parallelly in each cycle. Notably, the
execution of the next iteration must wait until both blocks in
the previous cycle are finished so that the ending structures
could be updated.
2.2. Path Optimization. For a transition completed within

a large sampling space, the location of MFEP is of central
interest. Initiating from a predefined or guessed path generated
using various sampling techniques, path optimization schemes
usually approach the MFEP by expanding the sampling region,
including the string method with drifting paths, the traveling-
salesman based automated path searching (TAPS)67,68 that
sample conformations perpendicular to the reference path, as
well as other path refining methods.
In this study, we perform PCA analysis on the sampled

structures (by COMBAS or tMD) to reduce dimensionality of
the original Cartesian space. The top five PCs explaining more
than 80% of the total variance are selected to construct a
reduced feature space. We then adopt the post-hoc string
method (PHSM)69 to generate a putative transition pathway,
which is further refined by SMwST.53 The SMwST improves
the sampling and lowers energy barriers by relaxing image

conformations on the path iteratively. Here, we use Cartesian
coordinates of the Cα atoms as collective variables for SMwST
calculation to ensure continuity in the high-dimensional space,
as reported in the literature.70 After 70 iterations of the
procedure, the path is well refined to reach convergence.

2.3. Free Energy Calculation. In the work of the finite
temperature string (FTS) method,54,55 the reaction path is
parametrized by a principal curve, which simplifies the
following PMF calculation.71 Borrowing this idea, we also
adopt the principal curve to parameterize the pathway
predetermined in the previous section (Section 2.2) and
evaluate the free energy profile along the curve. The principal
curve,66 a nonparametric generalization of principal compo-
nents, is a smooth one-dimensional curve that passes through
the middle of the dataset orthogonally, providing a 1D
description of the data. Like in the previous work,72 we employ
umbrella sampling to evaluate the PMF as a function of the
curve parameter as described below.
For a sequence of conformations along the path denoted as

X1, X2, ..., XN, a principal curve is constructed to fit the dataset
of Cartesian coordinates of Cα atoms. Any point X in the
configuration space can be projected to the closest point on
the curve to obtain the corresponding Xcur. We use λ to denote
the cumulative curve length such that the arc length between
two images is given by

∫λ λ− = Xd .2 1
cur

(17)

The umbrella potential is

λ λ= −U
k
2

( ) ,i i
2

(18)

= −X X XU
k

( )
2

( )i i
cur cur 2

(19)

where λi and Xi
cur are the reference point and the structure for

the ith window along the principal curve.
The direction vector from −Xi 1

cur to Xi
cur is

⃗ =
−
−

−

−

X X
X X

d .i
i i

i i

cur
1

cur

cur
1

cur
(20)

Hence, for each structure in X that is restrained around Xi:

≈ + − · ⃗X X X X d( ) ,i i i
cur cur cur

(21)

≈ [ − · ⃗ ]X X XU
k

d( )
2

( ) .i i i
cur 2

(22)

The biasing potential is applied as the summed projection of
deviations of Cα atoms coordinates from reference coordinates
onto d⃗i:

∑= ⃗ · −

− −

=
X X X X

X X

p d U( , ) ( ( (cog))

( (cog))),

i
t

i
j

n

i
j

i
t

i
t

i i

cur

1

cur cur
(23)

where U is the optimal rotation matrix, Xi
t(cog) and Xi

cur(cog)
are the centers of the geometry of the current and reference
positions, respectively, and d⃗i

j is the component of the direction
vector (d⃗i) for the jth atom.
Adjacent umbrella windows are sampled with sufficient

overlaps. The final PMF profile is obtained using the weighted
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histogram analysis method (WHAM) in combination with the
Bayesian block bootstrapping scheme.73

2.4. MD Simulation and Computational Details.
Parameterized by the AMBER ff14SB74 force field, each
simulation system was solvated in a periodic water box filled
with explicit water molecules and a necessary number of Na+

and/or Cl− ions for neutralization. The cMD simulations were
performed on the GPU version of OpenMM10 in the NVT
ensemble with temperature held at 300 K. The long-range
electrostatic interactions were calculated using the particle
Mesh Ewald and the van der Waals cutoff was set as 10 Å. The
time step was set as 2 fs with SHAKE turned on to remove the
stretching degrees of freedom of hydrogen-involved bonds. We
used Amber75 to perform tMD with the additional energy term
defined as

= · · · −E 0.5 FRC NARMSD (CURRMSD TGTRMSD) ,2

(24)

where FRC stands for the force constant and NARMSD
denotes the number of atoms involved in RMSD calculation
(Cα atoms in this work), while CURRMSD and TGTRMSD
refer to the current and expected RMSD values, respectively.
The one-step biased MD was realized in a similar manner to
umbrella sampling, by applying a quadratic potential on Cα
atoms to penalize the structural deviation from the putative
central structure that is estimated from the step size and the
optimal collective motion. In this work, both one-step biased
MD and umbrella sampling were implemented using NAMD76

with proper restraining weights. Other parameters in biased
MD are similar to those described above for the unbiased MD
simulations. All simulations were accelerated by GPU.
We used MDTraj77 for the postprocessing of MD

trajectories, for example, reading, superposing, and coordinate
extraction. tICA was conducted using MSMBuilder45,78 and

PCA was implemented with Scikit-learn.79 Tensorflow80 was
employed for optimizing the loss function by SGD. The
workflow of COMBAS was mainly written in Python and
NAMD configuration files, with connecting shell scripts to
allow automatic running. The codes are freely available at the
GitHub site of https://github.com/Gonglab-THU-MD/
COMBAS.

3. RESULTS

We first evaluated the sampling efficiency of our COMBAS
method on three small proteins, chignolin (PDB id: 5AWL),
trp-cage (PDB id: 2JOF; the first NMR model used here), and
villin (PDB id: 2F4K), taking the extremely long cMD
trajectories (106, 208, and 125 μs, respectively) simulated by
D. E. Shaw Research9 as the reference for comparison. Then,
we comprehensively tested COMBAS on two larger human
proteins, c-Src tyrosine kinase and myosin VI, where the
structural transition between distinct conformational states are
impracticable to achieve by pure cMD simulations. For these
two proteins, we sampled the transition paths using the
COMBAS method and refined the paths using the string
method. Because of the lack of available cMD trajectories for
comparison, we evaluated against the paths generated
following a generic protocol:56,81,82 initialize the path by
pure tMD simulations and refine it using the string method. C-
Src is a protein playing key roles in the cell cycle83 with well-
characterized inactive (PDB id: 2SRC) and active (PDB id:
1Y57) states. Here, we only adopted the catalytic domain
(residues 260−521) with ATP included and denoted the
system as c-SrcC. During activation, the catalytic domain
experiences a large conformational change, where the overall
RMSD reaches ∼9 Å and certain residues in the A-loop move
as far as ∼25 Å. Myosin VI is the only known member of the
myosin superfamily that walks in the opposite direction to all

Figure 2. Parameter selection of COMBAS. First, the Diff-vector between ending structures (red arrows in the upper left panel, visualized by the
ProDy plugin in VMD) is estimated. Next, tICA is performed on the cMD trajectory, and SGD is conducted to find the best linear combination
within each tIC group. After that, the tIC group is chosen based on PCC evaluation, and the final optimal collective motion is thus determined.
Finally, the step size for subsequent one-step biased MD is determined based on the projection of cMD frames onto the optimal collective motion
(abbreviated as PROJ).
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of the other myosins on the actin filament.84 Here, we isolated
the converter domain of myosin VI (residues 703−788,
denoted as MVIC) to study the power stroke process from the
pre-power-stroke (PPS) conformer (PDB id: 2 V26) to the
rigor (R) conformer (PDB id: 2BKH), during which the
overall RMSD is ∼4 Å. Additionally, we also applied COMBAS

to a relatively small system, the receiver domain of nitrogen
regulatory protein C (denoted as NtrCR), which belongs to the
family of two-component systems in bacteria85 and exhibits an
RMSD of ∼3 Å between its inactive state (PDB id: 1 DC7)
and active state (PDB id: 1 DC8). Results of NtrCR can be
found in the Supporting Information.

Figure 3. COMBAS sampling was validated via comparison with the cMD reference trajectory on the reversible folding of chignolin (A), trp-cage
(B), and villin (C). For each protein, COMBAS cMD trajectories (upper panel) and the reference cMD trajectory (lower panel) are projected into
the same top 3 PC space derived from the reference trajectory. For chignolin, the reference trajectory is superposed to its folded structure before
performing PCA in the space of Cartesian coordinates of Cα atoms, whereas dimensionality reduction of the other two systems is conducted in the
space of pairwise distances between Cα atoms. All the reference trajectories are diluted by 10 folds, and the snapshots sampled by COMBAS are
colored from light to dark red corresponding to successive COMBAS cycles. The initial unfolded and folded states are denoted as big blue dots,
with the corresponding structures displayed aside in the upper left figures in panels A, B, and C, respectively.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00390
J. Chem. Theory Comput. 2022, 18, 4529−4543

4535

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00390/suppl_file/ct2c00390_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00390?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00390?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00390?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00390?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00390?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.1. Parameter Selection of COMBAS. Take c-SrcC

(containing 262 residues) as an example. The dimension of
this system is 786, and the lag time of tICA performed on the
10 ns equilibrium trajectory is 0.1 ns. As shown in Figure 2,
eigenvalues of the first half of all 786 dimensions are greater
than 0, indicating that the corresponding tICs represent the
dominant slow degrees of freedom in the dynamical process.
Discarding tICs with negative eigenvalues, we ranked the
remaining tICs by their eigenvalues and grouped them
cumulatively, with the number of tICs in each group set as
multiples of 10. For instance, group 1 refers to the first 10 tICs,
group 2 refers to the first 20 tICs, and group n refers to the first
10 × n tICs. Next, we tried to find the optimal linear
combination of tICs within each group by minimizing the loss
function (i.e., negative value of PCC between the recombined
vector and Diff-vector, see the Methods for details) using SGD.
Aiming at selecting global modes but excluding local modes as
far as possible, we set up a convergence criterion for identifying
a small group of top tICs. In practice, we computed the PCC
values between the optimal vectors of the current group (group
n) and the first group as well as two previous groups (groups n
− 1 and n − 4). As shown in Figure 2, PCC values converge at
a certain group size, meaning that the inclusion of more tICs
introduces marginal improvement. Specifically, the optimal tIC

group is chosen when the values of two PCC curves (n vs n −
1 and n vs n − 4, see the blue and orange lines in Figure 2)
satisfy |valuei + 4 − valuei|/4 ≤ 0.01 for the current group (i)
and two preceding groups (i − 1 and i − 2). Hence, we chose
the best linear combination of this group as the optimal
collective motion. By projecting cMD trajectory onto the
optimal collective motion, we calculated the median values of
the top 10% and the bottom 10% projections and then used
them to estimate the step size for the subsequent one-step
biased sampling. The parameter selection in the remaining
rounds of c-SrcC and MVIC can be found in Figures S1 and S2,
respectively. By projecting the biased trajectory onto the
optimal collective motion, we selected representative structures
from the late stage of biased sampling that have large
projections and small RMSDs to start new cMD simulations
for the next cycle.

3.2. Proof of Principle. Here, we validated the sampling
efficiency of COMBAS sampling on three small, fast-folding
proteins: chignolin, trp-cage, and villin. Specifically, we heated
the three-folded systems and then equilibrated them around
their melting temperatures (340 K for chignolin, 290 K for trp-
cage, and 360 K for villin, the same with the corresponding
simulations by D. E. Shaw Research) for 5 ns to obtain
relatively stable unfolded structures. Starting from both the

Table 1. Analysis of the Relative Coverage along the Top PCs

chignolin trp-cage villin

explained variance ratio relative coverage (%) explained variance ratio relative coverage (%) explained variance ratio relative coverage (%)

PC1 0.72 92 ± 2 0.52 85 ± 3 0.43 84 ± 6
PC2 0.06 80 ± 5 0.14 84 ± 3 0.13 89 ± 3
PC3 0.04 87 ± 2 0.09 67 ± 4 0.08 79 ± 3

Figure 4. Activation pathways of c-SrcC. (A) Structural illustration of c-SrcC. The residues are colored according to their pairwise RMSD values
between the inactive and active states. (B) Projection of historical cMD trajectories onto the Diff-vector between the inactive and active states.
Simulations starting from the two structural states cross at ∼40 ns. (C) Projection of COMBAS (upper panel) and tMD (lower panel) samplings in
the space of top three PCs. The cMD snapshots sampled in the COMBAS scheme are colored from light to dark red corresponding to COMBAS
cycles. (D) Refinement of COMBAS and tMD paths using the string method. Here, only paths at iterations of 0, 7, 14, 21, 28, 35, 42, 49, 56, 63,
and 70 are shown, and pairwise distances between images on the two sets of paths in the space of top three PCs are labeled with the mean and
standard deviation.
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unfolded and folded states, we then conducted iterative cycles
of COMBAS sampling, each consisting of 5 ns cMD and 1 ns
biased MD, to resolve the folding processes. To evaluate the
sampling efficiency, for each system, we collected all cMD
trajectories in the COMBAS cycles and compared with the
long cMD reference trajectory (by D. E. Shaw Research) by
PCA analysis (Figure 3). Notably, all structural frames were
projected into the same PC space, where the top 3 PCs were
computed purely based on the cMD reference trajectory. A
tMD was also conducted to simulate the folding process and
projected into this space (Figure S3). Clearly, the structural
frames sampled by COMBAS cMD trajectories exhibit a
similar level of coverages on the top 3 PCs when compared to
the reference trajectory (Figure 3). As shown in Table 1, the
relative coverage, that is, the percentage of the range (along a
PC) covered by the reference cMD, which is also explored by
COMBAS, exceeds 80% for most PCs, implying that global
motions in the folding process are largely tracked by COMBAS
sampling. On the other hand, the total simulation time of
COMBAS sampling (70, 250, and 150 ns for chignolin, trp-
cage, and villin, respectively) is shortened by nearly three
orders of magnitude when compared with the cMD reference

trajectories (106, 208, and 125 μs, respectively). Hence, the
COMBAS method is capable of sampling the feature space to a
similar extent as extremely long equilibrium simulations but
with remarkably reduced time. These results indicate that
COMBAS can capture the structural transition process with a
relatively high efficiency.
For each PC, the relative coverage is calculated as the ratio

between the absolute coverage range of COMBAS sampling
and that of the reference cMD trajectory and is represented in
percentage. Bootstrap resampling was performed by 1000
times to estimate the mean values as well as standard errors.
Explained variance ratio is the ratio within the total variance
explained by a specific PC during PCA analysis.

3.3. Activation of c-SrcC. 3.3.1. Convergence and Path
Optimization. The active and inactive states of c-SrcC exhibit a
remarkable structure difference (Figure 4A). However, with
the proceeding of COMBAS sampling, intermediate structures
sampled by iterative cMD trajectories starting from the two
distinct conformational states become approximate and even
cross each other, when projected on the 1D Diff-vector
between the active and inactive states (Figure 4B). In Figure
4C, all cMD snapshots are projected into the space of the top 3

Figure 5. PMF evaluation and structural details for the structural transition of c-SrcC. (A) PMF profiles of the COMBAS (red) and tMD (gray)
paths. (B) Switch of the D404-K295-E310 electrostatic network on COMBAS (red) and tMD (gray) paths. Electrostatic interaction is evaluated by
the distance between carboxylate O (for D404 and E310) and guanidine N (for K295) and by the magnitude of electrostatic energy (abbreviated as
ELEC) in the upper and lower panels, respectively. (C) Representative structural frames at various reaction coordinates (blue numbers on the top
of the frames) are selected to highlight the changes of the D404-K295-E310 electrostatic network as well as the associated movement of the αC
helix and the P-loop on the COMBAS (red) path vs tMD (dark gray) path. (D) Movement of the fragment between R409 and R424 in the A-loop.
The left panel shows the mean distance of this fragment to the center of rigid part of the protein (taking the positions of residues 389−391 as the
reference), while the right panel presents the RMSF profile of this fragment. (E) Structural details for the A-loop movement along the COMBAS
path. The left panel presents a schematic illustration of the mean distance as evaluated in panel (D). The right panel shows the Y416 outward
intermediate sampled by the COMBAS path (red). The corresponding residue remains inward facing on the tMD path (gray).
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PCs (explaining >75% of the variance). Again, cMD
trajectories starting from the inactive and active states
gradually approach each other with the proceeding of iterative
cycles. The convergence criterion becomes satisfied within six
cycles, which cost a total of 72 ns of simulation time for this
system. In contrast to the tMD simulation that simply connects
the two ending states, COMBAS sampling is diverse, likely
taking a tortuous contour to achieve the large-scale conforma-
tional change. We then adopted PHSM to pick up putative
pathways from COMBAS and tMD samplings, respectively,
and engaged the SMwST (referred as the string method in the
rest of this work) to further refine them. As shown in Figure
4D, because the string method can only provide local
optimization, the final paths are still very close to the initial
paths, and therefore, the significant difference between
COMBAS and tMD paths still persists after iterative
refinement using the string method (see Figure S4 for the
convergence check). To quantitatively describe this difference,
we calculated the distances between corresponding images on
the two sets of paths in the PC space (labeled as mean ± std.
in Figure 4D). Based on the one-way analysis of variance
(ANOVA) analysis, the COMBAS paths and tMD paths
obtained from all iterations in the string method are
significantly different, with the p-value < 0.001. This
observation reinforces the importance of initial path selection
in the derivation of MFEP.
3.3.2. PMF Calculation and Conformational Change

along the Path. We parametrized the refined paths of
COMBAS and tMD using the principal curve and employed
umbrella sampling to evaluate the PMF profiles along both
paths (Figure 5A). The COMBAS and tMD paths are divided

into 27 and 20 windows, respectively, with 36 ns simulation in
each window (see Figure S5 for the convergence of PMF
calculation, as justified by the sufficient overlaps between the
distributions of neighboring windows along the principal
curve). Along both paths, c-SrcC is more stable in the inactive
state (reaction coordinate λ = 0) than in the active state (λ =
1), as reported in previous studies.56,86 However, the
magnitude of free energy difference exhibits significant
distinction: ∼10 kcal/mol for tMD path vs ∼1 kcal/mol for
COMBAS path. The small free energy difference obtained
using our method is in excellent agreement with the work of
Sultan et al., in which the free energy differences between
active and inactive ensembles were found to fall within 1−2
kcal/mol across all sequences of seven Src family kinase (SFK)
members.87 A more recent study88 also supports the negligible
free energy difference between the two states of c-SrcC.
Moreover, the PMF curve only presents a small barrier of 4
kcal/mol on the COMBAS path (λ ≈ 0.27), in sharp contrast
to the ∼14 kcal/mol barrier on the tMD path. As a kinase, the
inactive c-Src should be able to sample the active state
occasionally, exposing its Y416 for phosphorylation in order to
finalize the activation process. In this perspective, PMF of the
COMBAS path is clearly more consistent with the functional
requirement of c-Src because the inactive−active conforma-
tional transition could be overcome by thermal motion.
Notably, the free energy barrier of 4 kcal/mol on the
COMBAS path agrees well with the value measured by Shukla
et al.86 (4−5 kcal/mol) using a large set of unbiased MD
trajectories and is remarkably lower than other previous
estimations56,88 (∼30 and ∼12 kcal/mol, for example).

Figure 6. Power stroke pathways of MVIC. (A) Structural illustration of MVIC. The residues are colored according to pairwise RMSD values
between the PPS and R states. (B) Projection of historical cMD trajectories onto the Diff-vector between the PPS and R states. Simulations starting
from two structural states becomes approximate without crossing. (C) Projection of COMBAS (upper panel) and tMD (lower panel) samplings in
the space of top three PCs. The cMD snapshots sampled in the COMBAS scheme are colored from light to dark red corresponding to COMBAS
cycles. Frames from the extra tMD to fill the gap in COMBAS sampling are highlighted as big gray dots. (D) Refinement of COMBAS and tMD
paths using the string method. Here, only paths at iterations of 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, and 70 are shown and pairwise distances between
images on the two sets of paths in the space of top 3 PCs are labeled with the mean and standard deviation.
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We then analyzed the structural details for the paths of
COMBAS and tMD. During activation, c-SrcC experiences
considerable conformational change, particularly the unfolding
of the A-loop (residues 404−424) from short helix-like pieces
to an extended loop, which exposes Y416 for phosphorylation,
and the accompanying inward rotation of the αC helix
(residues 300−317). We first explored the αC helix rotation.
On the COMBAS path, K295 drifts away from D404, its
hydrogen bonding patterner in the inactive state, at the very
beginning (Figure 5B, left panel) and then moves toward E310
on the αC helix to form favorable interactions (λ = 0.8−0.9,
Figure 5B, right panel), which may facilitate the inward
rotation of the αC helix and the associated uplift of the glycine-
rich P loop (Figure 5C). On the tMD path, however, K295
seldom forms interactions with E310 (Figure 5B, right panel).
Moreover, unlike the tMD path, the K295-D404 interaction on
the COMBAS path is restored temporarily at the late stage of
activation (λ ≈ 0.9, Figure 5B, left panel). This breaking−
reformation behavior agrees with the switch of the D404-
K295-E310 electrostatic network reported by Ozkirimli and
Post.89

As for the A-loop, aside from the initiated rearrangement of
the hydrophobic core constituted by residues F307, M314,

L407, and L410 as well as the opening of the α-helix-like piece
as reported before,56 the E310-R409 hydrogen bond remains
intact for a long time before breaking at a very late stage (λ ≈
0.9) on the COMBAS path, different from a previous report
that E310-R409 hydrogen bond only exists at local minima of
the free energy profile.56 The sustained E310-R409 interaction
might be helpful for stabilizing the N-terminal part of the A-
loop (residues 404−408). The most important difference
between the paths of COMBAS and tMD resides on the
fragment between R409 and R424. Quantified by a mean
distance from the rigid part of the protein (the center of
residues 389−391, see Figure 5E, left panel), this fragment of
the A loop is far more extended showing a significantly larger
mean distance (for λ > 0.4, see Figure 5D, left panel) and is
also more flexible with a larger root-mean-square-fluctuation
(RMSF) (Figure 5D, right panel) on the COMBAS path than
on the tMD path. In addition, the phosphorylation site Y416
experiences a novel inward−outward−inward transition along
the COMBAS path (Figure 5E), an observation that is not
found on the tMD path nor reported before. Previous single-
molecule and other experimental investigation on Vav190 and
the complex of p27 and Cdk2/cyclin-A91 have suggested that
protein dynamics may lead to transient exposure of the

Figure 7. PMF evaluation and structural details for the structural transition of MVIC. (A) PMF profiles of the COMBAS (red) and tMD (gray)
paths. (B) Rotation of the H4 helix along the COMBAS (red) and tMD (gray) paths. (C) L4 loop and the interhelix interactions between Y718
and I769. Upper panel: COMBAS snapshots (red) vs PPS state (light gray). Lower panel: COMBAS (red) images vs tMD (dark gray) ones. The
blue numbers indicate the approximate reaction coordinates for the corresponding structural frames. Hydrogen bonds are highlighted by dashed
lines.
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phosphorylation sites, allowing those residues to interact with
the kinase. More directly, Henriques and Lindorff−Larsen92
captured the transient exposure of phosphorylation sites of the
p27 complex (Y88 and Y74) by enhanced sampling
simulations and proposed that this motion may exist for
buried residues of many other proteins. These previous studies
may support the rationality of the transient Y416 outward
intermediates sampled by COMBAS.
3.4. Power Stroke of MVIC. 3.4.1. Convergence and Path

Optimization. The PPS and R states of MVIC have moderate
structural differences (Figure 6A). Again, during COMBAS
sampling, the two sets of structural intermediates sampled by
iterative cMD trajectories starting from the PPS and R
conformers get close to each other, as projected on the Diff-
vector (Figure 6B) and in the space of the top three PCs
(Figure 6C). However, unlike the c-SrcC case, even when
COMBAS sampling becomes convergent at the eighth cycle
(with a total simulation time of 96 ns), there still exists a gap
between the two parts, although the gap size is smaller than
that in the pure tMD sampling. Therefore, we had to conduct
an extra brute-force tMD to fill the gap (see the big gray dots
in Figure 6C, upper panel). Nevertheless, the combination of
all sampled structures allowed the construction of the putative
path, which was then optimized using the string method
iteratively (convergence check is shown in Figure S4). After
path refinement using the string method, the COMBAS path is
still significantly different (p-value < 0.001 by ANOVA
analysis) from the one generated by pure tMD simulations,
particularly in the direction of PC3 (Figure 6D).
3.4.2. PMF Calculation and Conformational Change

along the Path. Similar to the previous case, we evaluated
the PMF profiles along the paths of COMBAS and tMD. Both
PMF profiles suggest that MVIC in the PPS conformation
(reaction coordinate λ = 0, also called the lever-up state) is
energetically more stable than the R conformation (λ = 1, also
called the lever-down state) (Figure 7A). This observation is
generally consistent with a previous study on a different
myosin (myosin V) claiming that the power stroke (lever-up to
lever-down) is an endergonic process because of the angular
energy of the lever.93,94 Notably, the free energy difference
between the two states is about 4−5 kcal/mol for the
COMBAS path, close to the minimum energy difference of
∼3.1 kcal/mol measured by Alhadeff and Warshel.95 In
contrast, the value is overestimated as ∼10 kcal/mol when
using the tMD path, reinforcing that a proper initial path is
essential for reliable thermodynamic evaluation.
The converter domain of MVI exhibits two prominent

differences between the PPS and R states: (1) the orientation
of helix 4 (H4), which inclines at about 45° to the β-sheet in
the PPS state but becomes vertical and approximately
perpendicular to the β-sheet in the R state, and (2) the
conformation of loop 4 (L4), which is α-helical in the PPS
state but becomes extended in the R state. We used the scalar
angle between the centers of mass for residue 771, residue 763,
and residues 755−758 to quantify the rotation of H4 during
the transition (Figure 7C, left panel). Clearly, the H4
reorientation occurs earlier on the COMBAS path than on
the tMD path (Figure 7B). Before the H4 rotation, at the
reaction coordinate of λ ≈ 0.2 of the COMBAS path, the L4
loop becomes slightly strained, allowing the formation of a
hydrogen bond between Y718 and I769 (Figure 7C, upper
panel), which coincides with the metastable intermediate state
at the corresponding position on the PMF curve (Figure 7A,

left panel). Besides the rotation of the H4 helix, major
structural differences between images on the COMBAS and
tMD paths lie in the L4 loop as well as the inter-helix
interaction (mostly hydrogen bond) between Y718 of H1 and
I769 of H4 (Figure 7C, lower panel). In Figure S6, we also
borrowed the collective variables reported previously71 (listed
in Table S1) to further describe the difference of L4 between
the two paths.

4. DISCUSSION
In this work, we developed a COMBAS method to quickly
derive a feasible transition pathway between two fixed
conformational states for a protein through relaxation-biasing
iterations. After optimization using the string method, the path
derived from COMBAS sampling enables rigorous free energy
evaluation for the structural transition process. The overall
pipeline could be conducted automatically, without any
requirement of a priori knowledge for order parameter
selection. When evaluated in small benchmark systems that
have been sufficiently sampled by cMD previously, COMBAS
sampling exhibits a comparable level of occupancy in the
conformational space to the extremely long simulations
executed on Anton. In the investigation of functional structural
transition for more complicated protein systems including c-
SrcC, MVIC, and NtrCR (see the Supporting Information and
Figure S7), paths generated by COMBAS sampling are more
physically reasonable than those generated by pure tMD
simulations. Among the three cases, the superiority of the
COMBAS path over the tMD path is highly remarkable for c-
SrcC that has the largest structural deviation between its
functional states, becomes weakened for MVIC that has a
moderate structural deviation, and diminishes for NtrCR that
has only minor structural difference. Simultaneously, the
proportion of extra tMD simulations in COMBAS sampling
increases in the same order. The reason is that COMBAS is
more suitable for sampling the large-scale structural transition
process because the optimal collective motion in each
COMBAS cycle is obtained from slow tICs that correspond
to global motions rather than local motions.
In this initial implementation of COMBAS, we chose tMD

to fill the gap on the transition paths of MVIC and NtrCR,
which is simple and fast but may result in a large deviation
from the true MFEP. To overcome this problem, enhanced
sampling techniques like aMD, FEXS, and SDS may be
engaged to replace tMD in the future (see Figure S8 for our
preliminary trial using aMD). Moreover, the convergence
check of COMBAS sampling was conducted in the space of the
top three PCs in this work but may need more PCs to describe
the global motions for more complex protein systems, which
may hinder visualization. As an alternative, we could substitute
PCA by nonlinear dimensionality reduction methods like the
multidimensional scaling.96 In addition, instead of decompos-
ing the cMD motions using tICA, we could use nonlinear
methods such as kernel tICA97 or neural network methods
such as the recurrent neural network (RNN)98 and the long
short-term memory (LSTM)99 network to capture the
nonlinear transformation from time-series trajectories. This is
also one of our future research directions.
Although we only used the Cartesian coordinates of Cα

atoms for COMBAS sampling, various side chain conforma-
tions were also sampled, for example, the switch of the
electrostatic network and the inward−outward−inward move-
ment of Y416 in c-SrcC, accompanying the backbone
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movement. Thus, COMBAS sampling could provide a
comprehensive description of the structural transition process.
In a previous study,86 extensive cMD simulations starting from
an initial path of c-SrcC activation sampled by tMD in
combination with MSM calculation successfully identified a
key intermediate state as the target for drug design.
Considering the improved initial path sampling by COMBAS
and novel intermediate states (e.g., the Y416 outward
conformation of c-SrcC) identified in this work, the
construction of transition networks using MSM from our
COMBAS path may allow the identification of new drug
targets in the future. Although awaiting further validation, the
COMBAS sampling proposed in this work may provide novel
insights into the mechanistic study and drug design.
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